A Chemical Stain for Identifying Arsenic-Treated Wood Products

Amy L. Omae and Helena M. Solo-Gabriele
Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA

Timothy G. Townsend
Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA

Abstract: Convenient and rapid detection of arsenic in treated wood products is necessary when evaluating possible exposure risks from the product during in-service use and disposal. For this study, a modified stannous chloride stain capable of specifically identifying arsenic in preservative-treated wood was developed by causing the over-reduction of molybdenum with stannous chloride prior to sample addition. This reduced the stain’s sensitivity to the background phosphate levels in the wood and permitted the detection of elevated arsenate concentrations. The modified stain was confirmed through field testing with weathered wood samples. Alternative application techniques, such as wipes, were further explored.

Keywords: Arsenic, treated wood, CCA, molybdenum, stannous chloride, stain

Funding for this project was received from the Bill Hinkley Center for Solid and Hazardous Waste Management. The research team gratefully acknowledges Florida Wood Recycling in the provision of recycled C&D wood, Dr. William L. Purcell, Dr. Carl D. Hoff, Dr. Tomoyuki Shibata, and Colleen Block for their assistance and advice on the project.

Address correspondence to Helena M. Solo-Gabriele, Department of Civil, Architectural, and Environmental Engineering, University of Miami, P. O. Box 248294, Coral Gables, Florida 33124-0630, USA. E-mail: hmsolo@miami.edu